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This work considers an Ising model on the Apollonian network, where the exchange constant J;;
~ 1/(k;k;)* between two neighboring spins (i,;) is a function of the degree k of both spins. Using the exact
geometrical construction rule for the network, the thermodynamical and magnetic properties are evaluated by
iterating a system of discrete maps that allows for very precise results in the thermodynamic limit. The results
can be compared to the predictions of a general framework for spin models on scale-free networks, where the
node distribution P(k) ~k~7, with node-dependent interacting constants. We observe that, by increasing u, the
critical behavior of the model changes from a phase transition at 7= for a uniform system (u=0) to a
T=0 phase transition when u=1: in the thermodynamic limit, the system shows no true critical behavior at a
finite temperature for the whole ©=0 interval. The magnetization and magnetic susceptibility are found to

present noncritical scaling properties.
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I. INTRODUCTION

Magnetic models on complex networks have quite distinct
behavior from those on regular lattices [1]. Their properties
are of far greater importance than just a mathematical curi-
osity since they establish landmarks for the behavior of many
systems, such as social, economic, and communication net-
works. For such systems, the understanding of the conditions
leading to a phase transition, or a sudden collective change in
the behavior of the agents, is of utmost importance to avoid
a breakdown of social structures or collective current day
technological facilities [2,3].

The absence of a finite temperature phase transition in the
thermodynamic limit N — %, where N is the number of nodes
[4,5], concomitant with the presence of a finite degree of
magnetic ordering, stays among the first results that have
been obtained for Ising models on the standard Barabasi-
Albert (BA) scale-free network [6], where the exponent of
the node distribution P(k) ~k~" assumes the value y=3. It
was also observed that finite temperature critical behavior is
found when vy e (3,5] while, for y>35 the critical behavior
collapses at 7=0. Later, an interesting interplay between
critical behavior and node-dependent interaction constants
has been evidenced [7-9]: if the strength of interactions in a
BA network, with a given value v, is nonuniformly reduced
according to

Ji,szO/(kikj)M’ (1)

where k; is the degree of node ¢, the critical behavior moves
into the universality class of the uniform model with a dif-
ferent value y’. This makes it possible, for instance, to de-
vise models in the standard BA network that undergo finite
temperature phase transition. An analytic expression,

Y =(y=w/(1-p), (2)

has been derived based on scaling arguments but, although it
has been numerically verified for BA networks, it is not
known whether its validity extends to other networks.
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The purpose of this work is to investigate the effect of a
node-dependent coupling constant on the properties of an
Ising model on the Apollonian network (AN) [10,11]. The
analysis of structures represented by exactly scale invariant
graphs, such as ANs, as well as physical models defined on
them, takes advantage of invariance properties to derive ex-
act mathematical recursion relations that describe the subject
properties in subsequent generations. This provides impor-
tant insights to the properties of similar structures and mod-
els on more natural systems, which share some of the net-
work properties with the AN. Similar structures have also
been discussed in the context of small-world hierarchical lat-
tices [12] and pseudofractal scale-free objects [13].

This network has very special features [14,15], including
presenting a power-law distribution of node degrees, with
exponent y==1.585. Previous results for Ising models on the
AN have shown that, for a variety of situations where both
ferromagnetic and antiferromagnetic interactions are al-
lowed, phase transition in the thermodynamic limit occur
only at T= [10,16]. ANs are constructed according to pre-
cise geometrical rules, which lead to exact self similar pat-
terns and scaling properties. They are also amenable to math-
ematical analysis based on renormalization or inflation
methods, such as the transfer-matrix (TM) formalism we will
use here, which allow for the evaluation of its properties in
the thermodynamic limit.

These facts turn this model particularly suited for testing
the existence of a finite temperature phase by modulating the
coupling constants according to Eq. (1). On the other hand,
since the AN geometric rules lead to a well defined value of
v, there is no general free parameter we can use in the study
to verify the validity of Eq. (2). Furthermore, it must be
stressed that, despite the fact that AN displays power-law
distribution of node degree, it differs substantially from BA
network with respect to other topological properties, such as
the existence of many closed loops. This is expressed, among
other measures, by the clustering coefficient C, which is very
high (~0.85) for AN and very small (~1/N) for the BA
[10,11]. As our results will show later on, the Ising model on
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FIG. 1. Geometrical construction of the first three generations
(g=0, 1, and 2) of the AN. Circles for corresponding Apollonian
packing problem are not included. Nodes are numbered according
to the scheme used in [16]

AN can hardly be taken into account by the mean-field-like
theory that constitutes the main assumption of the evaluation
of critical exponents of the Ising model on BA networks [4].
Indeed, it is expected that strong correlations introduced by
the abundance of loops in AN modify the classification of
critical behavior.

The rest of this paper is organized as follows: Sec. II
introduces the basic properties of AN and of the proposed
model; details of the used TM scheme to evaluate the ther-
modynamical properties are discussed in Sec. III. We discuss
our main results in Sec. IV, emphasizing the emergence of a
crossover in w. Finally, Sec. V closes the paper with our
concluding remarks.

II. APOLLONIAN NETWORK AND MODEL

ANs have been recently introduced in the complex net-
work framework [10,11] although the original concepts can
be traced back to ancient Greece, where the problem of op-
timally filling two- and three-dimensional spaces with circles
and spheres has been studied by Apollonius of Perga [17].
The complex solution to this problem, which amounts to
placing tangent structures with well defined radii at precise
centers, suggests the far simpler problem of constructing the
AN. In this case, one just has to put a node in each circle
center, and a network edge between the centers of each pair
of tangent circles. In this work, we consider that, at the ze-
roth generation g=0, three tangent circles with the same ra-
dius occupy the centers of an equilateral triangle. Corre-
spondingly, the AN starts with a single equilateral triangle.
The construction process can be followed in a recursive way
in terms of the generation g. For the (g+ 1)th generation, the
network is obtained by inserting a node within each triangle
of the gth generation, and connecting it to each of the tri-
angle corners (see Fig. 1). It is a simple matter to verify that
the number of network nodes N(g) and edges B(g) increase
according to, respectively, N(g)=(32+5)/2 and B(g)=(3%"!
+3)/2. The average number of neighbors per node equals six
since B(g)/N(g)— 3 in the limit g— oo,

For a given generation g>>0, the largest node degree is
k.(g)=3x28"!, where the subscript ¢ indicates that such
node occupies the central network position. The second larg-
est degree nodes, with k,(g)=28+1, occupy the external cor-
ners. At any generation g, there will be internal nodes with
degree k=k(g)=3%2%"1,g=1,...,g, and k,. The number of
nodes m(k;g) with degree k(g), or the degree dependent
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node multiplicity, is expressed by m(k;g)=3%"¢ for the inter-
nal nodes, and m(k,;g)=3, V g, for the nodes at outer net-
work corners.

As already quoted, the resulting AN is scale-free. How-
ever, it also has other properties that are typical for other
complex network classes, as being small world (mean mini-
mal path (€)~1In N), hierarchical [the clustering coefficient
of individual nodes c(k) has a power-law dependence on k],
and having a large clustering coefficient C. Because of this,
systematic network clustering analysis based on several in-
dependent measures [18] shows that AN does not belong to
the same class as the most studied network sets, generated by
the algorithms proposed by Watts and Strogatz [19] and
Barabasi and Albert [6].

We consider the Ising model with spins o;= = 1 placed on
each site of the Apollonian network. Pairs of spins (i,j),
which are neighbors on the network, interact with coupling
constants J; ;. Thus, the Hamiltonian for the system can be
written as

ng_z‘]i,ja-ia-j_hz ag;, (3)
(i.)) i

where J; ; is given by Eq. (1). In our previous studies, we
have considered inhomogeneous models, in which the con-
stants J;; depend on the generation g at which the edge,
hence the second spin in the pair, was introduced into the
network. Due to the fact that, at each generation, the newly
introduced nodes are connected to nodes that were intro-
duced in previous generations, the scheme introduced in Ref.
[16] does not assign the values of J; ; according to the rule of
Eq. (1). In the following section we discuss how to imple-
ment the interaction constants of Eq. (1) in connection with
the TM method used to evaluate the model properties.

III. TM RECURRENCE MAPS

The basic steps to implement the TM method we used to
evaluate the thermodynamic properties have been presented,
with some detail, in one of our previous works [16]. How-
ever, the method needs to be adapted to the specific situation
introduced by the more complex interaction given in Eq. (1).
Thus, let us briefly recall that the TM scheme amounts to
writing down the partition function Z[T,h,N(g)], where h
denotes the magnetic field, for any value of g in terms of a
TM that describes the interactions between any two of the
outer AN sites. In this process, it is necessary to perform a
partial trace over all interaction dependent configurations.
Due to the exact geometric AN construction rule, it is pos-
sible to express the TM matrix elements at generation g+ 1 in
terms of the corresponding elements at generation g. In this
framework, we basically work with a set of 2X2 square
matrices

M, - (ag bg)’ @
g

and a set of nonsquare auxiliary matrices
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which explicitly include the dependence of the third outer
node spin variable. As the L, matrix elements are numbered
according to the lexicographic order, the following relations
hold: a,=pg+q,, bg=rg+sg, Co=totu,, and dg=vg+wg. For
more symmetrical models and field independent situations,
the number of independent variables can be reduced.

For several models where the constants J; ; do not depend
explicitly on the node degrees, it was possible to write down
a single set of recurrence relations between matrix elements
in successive generations [16]. Although the basic idea of the
method remains the same, for the current model, it is neces-
sary to track the way the nodes are reconnected when they go
from g to g+ 1. This influences the change in their degrees so
that the same node will contribute differently for distinct
values of g.

We start the discussion of the changes in the TM scheme
by pointing out that, besides knowing the set of node degrees
and corresponding degree (node) multiplicity, it is necessary
to go one step further and identify each of the P(g)=(g>-g
+2)/2 different triangles in which the g network can be dis-
assembled. In this respect, each triangle is characterized by
the node degrees k;, kj, and k, of the nodes i, j, and ¢,
respectively. For any triangle and any g>1, there is always
(only) one node with k=3. Note that P(g) grows only with
the square of g so that, even for a complex interaction struc-
ture, there is practically no constraint to numerically com-
pute these matrix elements for very large values of g.

Once this set has been identified, we evaluate the model
properties at generation g by computing the contribution to
the partition function from each of these P(g) triangles, stor-
ing them in corresponding TMs L', i=1,...,P(g). To pro-
ceed further, we must consider that the g evaluation is
equivalent to the g—1 one, provided we start with triangular
units with a fourth node added at the central position. This
way, it is possible to compute the contribution of the new
P(g—1) triangles by performing partial trace over the contri-
butions from the central node of each of these structures. The
new form of the general recurrence relations for the matrix
elements,

(Lg+l)3k = E (Lg)iy,]jé’(l’g)ie,ek(l‘;)lije’ (6)
14

is quite similar to that of the previously investigated models
[16]. The difference refers to the superscripts 7, €, and k,
which identify which three TMs (corresponding triangles)
have been put together. The same arguments can be used
again until we obtain one single TM that accounts for the
contributions of all network nodes.

The results we present in the next section consider g
=50 which, for the largest value, the number of sites is
roughly of the order of magnitude of the Avogadro number.
The adaptation of the uniform TM procedure taking into ac-
count the node-dependent interaction constant depends basi-
cally in the identification of the basic triangular units and the
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FIG. 2. Dependence of Jy; on u, as a result from fixing the
ground-state energy per spin uy=-3.

assembling rules that combine them when one goes from g to
g+1. A summary of the implementation of the details is pro-
vided in the Appendix.

Finally, it is important to note that the map iterations can
be more conveniently performed if we rewrite the set of re-
currence maps given by Eq. (6) in terms of the free energy
and the ratio of the L, matrix elements to the largest one (g,).
Indeed, this avoids numerical divergences, in the low-
temperature region, when g increases, as conveniently dis-
cussed in Ref. [16].

IV. RESULTS

According to the previous section, we present results for
fixed number g of generations, usually g=10, 20, 30, 40, and
50, corresponding to networks with 2.953X10% 1.743
X 10°, 1.030 X 10", 6.079 X 10'°, and 3.590 X 10** sites, re-
spectively. The precise numerical evaluation of the free en-
ergy f(T,h) allows obtaining of the entropy s(7), specific
heat c(7), magnetization m(T,h=0), and susceptibility
x(T,h=0). For models on Euclidian lattice, on hierarchical
lattices, and several fractal structures [20], it is possible to
show that the correlation length &~ 1/In(\;/\,), where A,
and A, are the two TM eigenvalues. Thus, our framework
also allows for the numerical evaluation of & with high de-
gree of accuracy. In the case of complex networks and, in
particular, of the AN, the connection between ¢ and
1/In(\;/\,) is not so obvious, as the distance between two
outer nodes remains always one in any generation. There-
fore, we will discuss the behavior of 1/In(\;/\,) although
we refrain ourselves from calling it &.

Equation (1) indicates that the coupling constants J; ; lin-
early depend on J,. According to Sec. II, the number of
connections in the AN at generation g is Lg:(3g+‘ +3)/2. If
we take Jy=1 when u=0, the free energy per spin in the g
— oo limit is ug=-3 at T=0. If we fix Jy=1 and let u in-
crease, the value of u, decreases and, besides that, all ther-
modynamic effects will occur at a lower value of 7. Thus, to
avoid choosing an adequate temperature scale to work with
at each value of w, we find it more convenient to choose a
dependent value Jy(u), by requiring that uy=-3, V w. In Fig.
2, we show the dependence of Jy(w) on w, which shows that
Jo~exp(u). As a consequence of this choice, all maxima of
the specific heat occur roughly at the same value of 7.
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FIG. 3. (Color online) Plots of the specific heat ¢ for g=40
(symbols) and g=50 (solid line) for different values of w: O (black
squares), 0.5 (red diamonds), 1.0 (green up-triangles), and 3.0 (blue
down-triangles). The superposition of curves and symbols for
g=40 and g=50 indicates that ¢ converged to its value in the ther-
modynamic limit.

Figure 3 shows that, for g=40 and 50, and =0, 0.5, 1,
and 3, the curves for ¢ are qualitatively insensitive to the
values of g and w; all of them are completely smooth, with a
Schottky-type maximum at a temperature 7. This constitutes
a main difference to the results for the y=3 BA networks [8].
In that work, the authors report the presence of a finite criti-
cal temperature, identified by a jump in the specific heat
when ©>0.5, which changes into having a diverging slope
when 0.5>u>0.33. According to Eq. (2) and to the AN
known value of y=1.585, similar critical behaviors should
emerge for 0.854> ©>0.707, if the AN were to fall within
the BA universality class. This clearly shows that the validity
of Eq. (2) cannot, in general, be extended from the BA to
other network classes, even if they are scale-free as the AN.

The same calculations reveal that the resulting patterns for
m, x, and 1/In(\,/\,) depend, first, on the generation g, and
further on whether 0<u <1, u=1, and u>1. So it is ad-
equate to discuss them separately.

A 0<p<1

Within this parameter interval, we observe that, like for
the models where J;; does not depend on node degree,
1/In(\;/\,) numerically diverges (>10'") for a nonzero
temperature T,(g), which increases linearly with g. Since g
~In N, T, depends in a logarithmic way on the system size.
If we write T;(g) ~A(u)In N, we find that A(u) decreases
with u (see Fig. 4).

In Fig. 5, the behavior of the zero-field magnetization
m[T,h=0,N(g)], which is exactly one when T=0, slowly
decreases when T increases. Its behavior when ©=0.5, at
larger values of T, is a bit more complex than that for u=0
[Fig. 5(a)]. There it is clear that m suffers a first crossover to
an exponential decay at T, which is followed by a transition
to a second exponential decay, mediated by a larger constant,
at T,,(g). The magnetization curves for different g collapse
during the first and second regimes. The third regime will
later on be interrupted again by a smoother decay. As ob-
served with T,(g), T,(g)~B(u)g, with B(u) ~A(w). How-
ever, T, and T,, do not coincide. The second part of the
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FIG. 4. (Color online) Dependence of the temperatures 7; (sym-
bols) and T,, (solid lines) on the network generation g. They indi-
cate, respectively, the temperature of numerical divergence of
1/In(\;/\,) and of the maximum of susceptibility x. (a) u©=0.0
(squares), 0.5 (up-triangles), and 0.8 (down-triangles). (b) u=1.0
(circles) and 1.2 (diamonds).

magnetization curves, where m[T,0,N(g)] overlaps for dif-
ferent values of g, extends over wider T intervals when g
increases. This shows that, in the thermodynamical limit g
— o, the value of m will follow the second exponential de-
cay when T— . Nevertheless, as observed for 7, this re-
gion grows logarithmically with the network size.

The behavior of y is strongly correlated with that of m. It
vanishes when 7T—0, then it grows with 7, shows a first
maximum at a g independent T, and a second g dependent
maximum at 7,,. As for m, the curves for larger values of g
overlap for much larger distances. The maxima of the y
curves are described by a universal function, as can be ob-

(a) -0 12 T 24 36

FIG. 5. (Color online) Behavior of the magnetization
m[T,h=0;N(g)] as function of the temperature T for different val-
ues of ¢ when u=0.5, 1.0, and 1.5. (a) w=0.5, g=20, 30, and 40
indicated by dots, dashes, and solid lines. Four regions character-
ized by different behaviors are obtained: two of them are g inde-
pendent, the second of which has an exponential decay. The third
region starts with a crossover to a second exponential regime. (b)
p=1.0, same symbols as in (a). The first exponential region has
disappeared. (c) u=1.5, g=10, 15, and 20 indicated by dots, dashes,
and solid lines. The first region in (a) has disappeared. Two T in-
tervals separated by a g dependent crossover temperature are ob-
served. As g increases, m vanishes for any 7> 0.
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FIG. 6. (Color online) Main panels show scaling properties of
the magnetic susceptibility x[7,h=0;N(g)] as function of the tem-
perature T for different values of g=40 (solid), 45 (dashes), and 50
(dots), when (a) u=0.5, (b) 1.0, and (c) 1.5. The insets show the
same curves in the original variables. (a) Scaling properties of y as
function of T-T,,, with exponent y/v=0.607, are observed in re-
gion iii of the magnetization m [see Fig. 5(a)]. (b) Scaling proper-
ties of y as function of 7, with exponent y/v=1.0, valid in region
iii, with exponential decrease in m, as discussed in Fig. 5(b). (c)
Scaling properties of x as function of 7, with exponent y/v=1.0.
Scaling is valid in the two regions shown in Fig. 5(c). The horizon-
tal axis is in logarithmic scale to evidence Curie’s law with g de-
pendent constant C,.

served in the very precise rescaled curves in Fig. 6(a), which
shows that the scaling exponents increase with u. Note that
only the value of y needs to be scaled by the corresponding
maxima while the location at the temperature axis is cor-
rected by shifting the scale by T,,(g). The linear increase in
the value of T,, as function of g excludes any possibility of
having a critical phenomenon associated with susceptibility
maxima.

B. p=1

This value of u determines a crossover in the behavior of
the system, which is reflected both in m and y. This change
can be noticed in Fig. 3, which shows that A(u=1)=B(u
=1)=0, i.e., the temperatures associated with the maxima of
the susceptibility and the divergence of 1/In(\;/\,) become
independent of the system size. The precise value of T, de-
pends, of course, on the threshold value of the numerical
divergence. However, by plotting the value of 1/In(\;/)\,) as
function of 1/T, we notice a linear dependence in the T
— 0 limit, suggesting that 7,=0.

However, this new behavior cannot be associated with the
emergence of criticality. First we recall that Fig. 3 does not
indicate any change in the Schottky profile and, second, we
see that 7,,>T,. Finally, the x curves in the region around
T,, which shows a perfect scaling with respect to g with
scaling exponent 1, are completely smooth [see Fig. 6(b)].
Note that the horizontal axis indicates that it is not necessary
to shift temperature as in Fig. 6(a). Note that the two
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maxima, which were observed when p <1, have merged to-
gether, and that the large temperature side is characterized by
an exponential decay.

As for the previous u interval, the behavior of m is
strongly correlated with that for y. It is characterized by a
single exponential decay after 7,,, with a very large constant,
as shown in Fig. 5(b).

C.p>1

In the last range of parameter values, T, and 7, decrease
with respect to g. As shown by Fig. 4(c), both values con-
verge exponentially to zero with respect to g. Figure 4(c)
also shows that the rate in the exponential increases with .

Therefore, the behavior of 1/In(\;/\,) is different from
that one observed for w=1, the divergence when 7— 0 be-
comes slower at increasing values of g. This suggests that,
when g— 0, any collective spin ordering is weaker than that
of an Ising chain, rather typical for a paramagnetic situation.

The shape of the m curves becomes completely different.
The stable plateau at m=1 for a finite temperature interval,
which survived until w=1, disappears as g increases, indicat-
ing that no spontaneous magnetization exists for a 7>0.
This suggests that, in the thermodynamic limit, m=0V T
>0. Our results do not allow to assert that m=0 also for
T=0.

The behavior of y supports the conclusion of a low-
temperature paramagnetic phase. It increases very rapidly
from zero to a maximum value at 7,,, followed by a 1/7 law.
Since T, goes exponentially to zero, a Curie law prevails for
large g. This is shown by the scaled curves in Fig. 6(c),
which indicate that the Curie constant C depends on g.

V. DISCUSSION AND CONCLUSIONS

The results we obtained for the magnetic behavior of the
Ising model with node-dependent interaction constants re-
veal a quite rich picture although no critical behavior at a
finite temperature has been identified. The properties of spe-
cific heat show that the g dependent curves converge very
rapidly to a well defined value in the thermodynamic limit.
On the other hand, magnetization and susceptibility indicate
a much more complex behavior which, for certain tempera-
ture intervals, are heavily dependent on the value of g.

The TM method allows for the comparison of m and y for
different values of g, which leads to the identification that
part of the results are due to finite-size events. The curves
showing such effects are amenable to very precise collapsing
by adequate scaling expressions, similar to critical points in
magnetic models on Euclidian lattices. This includes the de-
pendence of characteristic values of the temperature (7; and
T,).

The behavior of the system in the region w<<1 is close to
that observed for magnetic system with uniform interactions
on BA networks: only an ordered phase is observed at any
value of T. u=1 characterizes a crossover in the behavior of
the system; as for u <1 the magnetization vanishes, for any
value of T, when g — 0. This region reveals a typical behav-
ior of a genuine paramagnetic system. This picture is cor-
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roborated by the behavior of y, as one finds that a Curie law
is valid in a limited region close to 7=0. For larger values of
T, the decay is characterized by an exponential decay.

In the context of complex networks our most important
finding is that the relation of Eq. (1) between effective topol-
ogy and interaction strength proposed in Refs. [7,8] does not
have general validity for all scale-free networks since the
Apollonian case behaves differently.

The developed framework can be adapted to investigate
the Ising model (or other magnetic models) with node-
dependent interactions on similar networks. The expressions
indicated in the Appendix are valid also for antiferromag-
netic couplings J, <0 and/or for negative values of u in the
AN. For this particular situation Jy>0, w<0, preliminary
results indicate that the thermodynamical behavior is much
the same as long as |u/| is small. However, for larger values
of |ul|, Eq. (1) reduces significantly the interaction between
nodes with low degree, which are the majority. Therefore, a
decrease in magnetic ordering may, in the limit N— o, be
expected. A thorough analysis of the unexplored parameter
regions will be presented in a forthcoming paper.
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APPENDIX

As discussed in the Sec. II, for any generation g, the node
occupying the central position of the AN has the largest de-
gree k.(g), the value of which results from the difference
equation relating the values of k. at two successive genera-
tions: k.(g+1)=2k.(g). The degree of the nodes at the exter-
nal corners obeys a similar equation, namely: k,(g+1)
= Zke(g ) -1

The AN can be disassembled in triangles, in such a way
that each node i of degree k; belongs to k; triangles. The only
exception refers to the nodes at the external corners, which
have degree k,(g) but belong to k,(g)—1 triangles. Each such
triangle can be characterized by the degree of its three nodes.
The number P(g) of different triangles at generation g can be
expressed in terms of p(g) and 7(g), respectively, the number
of triangles that does not include (includes) an external node:
P(g)=p(g)+7(g). Since they obey the relations p(g+1)
=p(g)+7(g)—1 and m(g+1)=m(g)+1, we obtain p(g)=(g>
—3g+2)/2 and 7(g)=g, from which the expression for P(g)
anticipated in Sec. III follows. The number p(g) can be fur-
ther decomposed in terms of «(g) and «(g), respectively, the
number of different triangles that includes (does not include)
the central node at generation g. It is a simple matter of
inspection to see that «(g)=g-2 and «(g)=(g’>-5g+6)/2,
VvV g=2.

For the purpose of computing the TMs, it is necessary to
identify the distinct triangles present in the AN. This pro-
ceeds by the collection T, /(k;,k,,k3), where g indicates the
generation, ¢ is a number [1,P(g)], and k; indicate the
degrees of the nodes at the vertices of the triangle.
T, Aky,ky,k3) are recursively defined according to the fol-
lowing rules:
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(1) ks=3,V g,V L.

(2) Since m(g)=g, one single new triangle containing an
external node is introduced into the network, Vg. We use ¢
=P(g-1)+1 to characterize it, and note further that k,
=k,(g), k,=k.(g). Any such triangle retains the k; values for
all further generations, i.e.,

Ty dky ko kz) = Ty o1(ky ko k), V &' = ¢ (A1)

(3) Vg, there are p(g) different triangles, among which
«(g) have been introduced in previous generations. They will
be characterized by the same values of k; so that Eq. (Al)
also holds for this subset. The remaining ¢(g) new triangles
are numbered according to the rule: (=P(g—1)+¢,
€=2,3,...,g—1. For each value of ¢, we set k;=k.(g), k,
=k ().

The final step consists of establishing the rule to combine
the contributions to the partition function from three distinct
triangles at generation g to obtain the partition function at
generation g+ 1 according to Eq. (6). If the properties of the
systems are to be computed until a chosen value g, we are
required to start with P(g) distinct triangles, precisely iden-
tified as discussed above. Then, as discussed in Sec. III, it is
necessary to define a map that selects the proper values of
7,€,8€[1,P(g)] used to perform the trace over the common
central node of the triangle a e[1,P(g—1)]. So let us note
that

8
[1,P(g)]=[1]U {UZ[P(g— D+1,P(g=1)+j - 1]}_
i

(A2)

Then, the values of 7, €, and & are given, as function of «, by
the following expressions:

a=1:
n=1,e=56=2;
a=P(-1)+1,je[2,g-1]:
n=2,e=P(j)+1,6=P() +2;
ael[P(-1)+2,PG-1)+j—-1],j e[2,g-1]:

n=Pla-P(-1)]+2,e=P(j)+2,6=a+j.

As the AN is self-similar, these maps are also valid for all
forthcoming partial trace operations until only one single tri-
angle is left. At this step, the remaining TM contains the
contribution from all spin configurations, from which the
thermodynamical properties follow.

With the help of these relations, a set of recurrence maps
can derived from Eq. (5), which allows for the evaluation of
the free energy and its derivatives:

N, T .
Fon=r S+ o+ ) = o[l +afxf ol
g+l g+1

Xexp(-2Bh)]} - NL (A3)

g+l
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S S
X5 X9+ X7 X5 X5, exp(—28h)

XY el = , A4
Letl 1+ xﬁgxigxig exp(—2Bh) (a4)
oDt g, o2

2T a7 o ), exp(= 28h)

€ 0 e 0

o X T, P28
X3g+1 = n € .0 ( )

L+ x] X7 oxy, exp(—2Bh)

& g 0

a _ le?,zx4,g + x57],gx5,grxl,g exp(— ZBh) A7
X401 = 7 e o ; (A7)

L4/ xy Xy, exp(—28h)

x7 x€ x0 +x7 xS x0 exp(—28h)

X = 4,8%6,6%2.0 T X5 A7 X3 ¢ (A®)

1+ xﬁgxigx’ig exp(—2Bh)
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n € 6 n € 0
o XGgXaXa ot XT XS XS, exp(—2Bh)

X, = s A9

6+l 1 +xf7’gxf,§xig exp(—2Bh) (A9)
x7 x& x0 +x7 x5 x0 exp(—2Bh)

x;l,g.;.] — 6.,{"x6yk"x6qg 7,,2'x7,,2”x7.k' (AlO)

1+ xﬁgxf,gxig exp(—2Bh)

In the above relations, the following variables have been
used:

r S
xl,gzﬁ, xZ,g=i’ x3,g=_&7 (All)
pg pg 8
t u v
X4’g = _g', xS,g = _&, x6,g = _K, (AIZ)
Pg Py Pg
w
xp,= % (A13)
Dy
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